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Time Dispersion Properties of Cascaded
Multimode Fiber Links

GIOVANNI CANCELLIERI, MEMBER, IEEE, AND PAOLA FANTINI

Abstract —A general model for studying the time dispersion properties
of cascaded multimode fiber links is presented. Fibers having different
index profiles and misaligned joints are taken into account. It is shown that
the transit time of a ray in the first fiber is conserved and transferred to
another ray in the second fiber, and so forth. Simple compensation
formulas are derived for a-profile fibers. The lower limit to the total time
dispersion, which is imposed by material dispersion, is also investigated.

1. INTRODUCTION

T IS WELL KNOWN [1]-[5] that cascaded multimode

fibers sometimes exhibit a compensation of their time
dispersion properties. This is due to their index profiles,
which may be either undercompensated or overcom-
pensated. Nevertheless, this compensation should be con-
sidered with some cares, in fact it affects only intermodal
time dispersion (intramodal time dispersion remains un-
changed). Moreover, distributed mode coupling tends to
reduce any compensation effect, although it may be benefi-
cial for the overall fiber bandwidth [6], [7]. Finally, consid-
ering the very critical role played by joint misalignment on
the time dispersion properties of a pair of equal near-
parabolic fibers recently shown in [8], we can expect that
joint misalignment affects also the compensation behavior
of two or more cascaded fibers.

In this paper we study the time dispersion properties of
an optical link, made of different cascaded multimode
fibers, in the presence of material dispersion and joint
misalignments. Distributed mode coupling is ignored here,
for the sake of simplicity, and will be considered in a
subsequent paper. However, the present approach can be
considered valid for practical fibers, provided that they are
loosely jacketed. The theoretical model is based on ray
optics, which allow a simple characterization of the joint.
Ray optics give acceptable results only when several
hundred modes are propagating. Such a condition is, how-
ever, well satisfied in usual multimode fibers.

In order to obtain general results, we do not consider a
specific dopant for the profile fabrication (e.g., Ge, P, - - -),
which would be characterized by a particular material
dispersion curve. Nevertheless, assuming an optical source
whose power spectrum p(A) is centered at the wavelength
A, and has a linewidth AA, we will consider some behavior
limits on the baseband response due to intramodal time
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dispersion, which depend on AA and on the parameter

d7/dA|\-,, where 7 is the time delay per unit distance of
the chromatic component characterized by the wavelength
A. In this way, we can predict when intramodal time
dispersion becomes predominant over intermodal time clis-
persion, making profile compensation useless.

There are different kinds of joint misalignments [9], but
probably the most frequent and critical, for both attenua-
tion and time dispersion properties, is a lateral displace-
ment, sometimes called offset. In [10], it has been shown
that also an angular misalignment (tilt) can be regarded as
an equivalent offset. Letting d be the lateral displacement
between the two fiber axes, and a their core radii, the
offset can be measured by the normalized quantity d /a.
Only very small values of d/a will be considered in the

. following, since it is typically some parts per thousand in

fusion splices, whereas it may reach few parts per hundred
in mechanical splices or in demountable connectors.

A very wide class of monotonic graded-index profile
distributions is well approximated by a so-called a-profile
distribution [11]. This is characterized by the property that
the group delay per unit distance of any ray, and even the
optical power carried by that ray under a uniform excita-
tion, depend only on its propagation constant B. This
feature much simplifies the theoretical treatment of the
problem. Nevertheless, recently [5], some limits of the
a-profile to reproduce actual fiber index profiles have been
stressed. So, we proceed as follows: firstly we consider
a-profile fibers, which have the advantage of a simpler
formalism, and then we take into account the case of a
general profile, giving some formal relations.

II. GENERAL PRINCIPLES OF THE THEORETICAL
MODEL

For a-profile fibers, letting x be a suitably normalized
propagation constant, whose permitted values range be-
tween 0 and 1, the group delay per unit distance of ray x
can be written as

r(x) =221+ A(a)x + B(a)x?]

(1)

where 7, is the on-axis index, c is the free-space velocity of
light, A(a) and B(a) are constants, depending on the
profile parameter a. All the intermodal time dispersion
properties of a single fiber can be described through the
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complex quantity
P(0)= [ p(x)exp[—ior(x)z]ax  (2)
0

where w is the angular modulation frequency, i the imag-
inary unit, p,(x) the optical power distribution in the
domain of variable x, and finally z is the fiber length.
P(x) depends on the launching condition and on the
profile parameter a. The baseband response of the fiber,
due to intermodal time dispersion, can be defined as
H(w)= P(w)/P(0).

We consider now a pair of cascaded fibers, with F1
indicating the transmitting and F2 the receiving fiber. Our
purpose is to determine an equivalent optical power distri-
bution p, and an equivalent phase distribution ¢, so that
the baseband response of the optical link consisting of the
two fibers can be obtained through a simple expression like
(2). Assuming as integration variable the normalized prop-
agation constant of F2, i.e., x,, in the most general case we
can expect to have

P(0)= [(p(xs0)ep[ =it (xz,0)] drz ()

We shall show later that it is possible to obtain this
approximate expression

P(o)= [p(x) e[~ ot (x)] dr,  (4)
in which 7,(x,) represents an equivalent time delay distri-
bution.

The resemblance between (4) and (2) encourages extend-
ing this model to more than two cascaded fibers. Such a
method could be very interesting for predicting the base-
band response of optical links made of many cascaded
fibers, knowing the differential mode delay distributions of
the single fibers, their material dispersion properties, and
approximately the accuracy of the jointing procedure. This
prediction, starting from the single baseband responses,
appears questionable, as recent measurements have shown
[12]. In the following, we will consider fibers having equal
average NA’s, core radii, and on-axis indices, in order to
stress the role played by the different profile parameters a.

III. SIMPLIFIED MODEL OF A JOINT

In this section, we recall briefly some properties of a
single a-profile fiber, then the optical power transfer at the
Jjoint will be described. The radiance distribution B, at the
input or output section of a fiber, is related to the total
guided power P through the quadruple integral

27 2 a 6, .
P=f0 d0¢f0 dqbfo rdrfO "B(r.$.6,,6,)sinf,cos6,df,
(5)

where r and ¢ are polar coordinates in the fiber cross
section, §, is the ray propagation angle in air, 6, is the
angle between the radial direction and the projection of the
ray trajectory on the transverse plane. Finally, a is the core
radius and ,;, the maximum permitted value of 6,, im-
posed by the fiber NA.
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For an a-profile fiber, whose refractive index distri-

bution is
n(r) =n0\/1—2A(£—)

where all the parameters are known, except for A, which
imposes the fiber NA, we can define a normalized propa-
gation constant x as

x = (1= B/K3), (6)

in which A is the wavelength of light. With this variable, it
is possible to simplify expression (5), provided that B,
which is imposed by the launching condition, is a suitable
function of r, ¢,8,,d,.

In the Appendix, it is shown that, when B depends only
on x, r/a, and ¢, which is the case of a joint affected by
lateral displacement, we can write

p = saduie e[ as [*"8(x. o) o[ ).
(7)

Note that, when B depends only on x, by a simple
integration, we have

P= 2772An%a2/1B(x)x2/°‘ dx.
0

27
ko = Tno

(8)

Comparing with (2), in which we have to assume w =0,
one can obtain the following relationship between B(x)
and p,(x):

p.(x)=27%An2a’*x*"B(x). (9)

In Fig. 1, the cross sections of the two fibers F1 and F2
are shown at the joint. We have two radial coordinates r,
7, simply related by Carnot’s theorem

rE=r}+d*—2r,dcos¢.

(10)
In the Appendix, it is shown that the variable x defined by
(6) can be expressed as a function of the radial coordinate
r and of the propagation angle in the fiber §. It is
sin® 6

A (11)
At the interface, by a straightforward application of Snell’s
law, we can write

rN %
e (33"

¥ o
x= (—) cos?8 +
a

(12)

Substituting (10) into this equation, and neglecting terms
of order greater than one in d /a, we obtain

~ B\ (R) T - Q)az
x1=x2+(a) al(a) o8¢ (a . (13)

a a

From (7), the complex quantity necessary for the computa-
tion of the baseband response of the optical link turns out
to be

P(w)= 877Ania2f01dxz‘/:M(d/a)dqb‘/(;x%/uzBl(xl)

cexp {—io]n(x)n + n(x)z]}(2)d(2) (4
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fiber F2

tiber F1

Fig. 1. Cross sections of the two fibers at the joint. O, and O, are the

two fiber centers, P is a generic point.

in which the radiance distribution B,, at the input of F1,
has been assumed to be a function of x; only. The upper
extreme of ¢-integration, denoted ¢,,(d /a), is not exactly
7/2, but it is slightly smaller. However, this fact, which is
important for joint loss evaluation, can be considered as
practically negligible for time dispersion evaluation, so in
the following we will assume ¢, =7/2. In (14), x; is
obtained as a function of x,, 7, /a, ¢, from (13).

In order to simplify the analysis, without loss of general-
ity, we consider now z; = z, = z, and a uniform launching
condition in F1, so that B;(x;) becomes a constant B,. In
this way, we obtain

= 1 ' /2 e
P(w)= SWAniazBoj(; exp | —iwn(x,)z] dx2f0 dqbfox2

~exp[—-iw1'1(x2,%,(p)z](%)d(%). (15)

We can assume that, for a; close to a,, and d/a <1, x, is
much greater than the other terms on the right-hand side of
(13), so that

(X + €)= 7 (x,)+7(x;)e

() = =2 [4(e) +2B(a))x, ]

()2 a2 e

a a a
and hence

P(w)= 877An,2)a2Bof1
0
. /2
-exp { — o[ (x,)+7(x,)] 2} dxzfo do

-[)xé/uzexp[—iw'rl’(xz)ez](%)d(ﬁ)- (16)

a

At the modulation frequencies of interest, i.e., not much
higher than the 3-dB bandwidth, we can consider that
wT{(x,)ez is a very small angle, therefore

exp| —ior{(x,)ez] =1—iwr{(x,)ez.

This approximation allows one to express the innermost
integral of (16) in a completely analytical form, leading to

P(w)= 2772An%a230/(;1

-exp { —iw[m(x;)+ 7y (%) +87(x,)] 2} xF/ 2 dx, (17)
with
87(x;) = =2 [ A(a) +2B(ay)x,]

2 4 4 w-t/md|

al/aZ— X
a,+272

.(a1+2x2

Since 87(x,)is small with respect to 7,(x,), it is possible
to write

-1y (xy) +07(xy) = ((xp))

2
= o/ay
(1) x2+a1+2x2 0(2-1—2x2
4 o d
— L (D) 2 18
x . [
7o+l a (18)

In other words, the time delay distribution of fiber F1 can
be added directly to that of fiber F2, provided that x; is
replaced by the new variable (x;) given by (18). Finally,
comparing with (4), one obtains

x,) = 2n*An?a*B x2/*
P, 2 ] 0”v2

(19)

which coincides with the optical power distribution under a
uniform launching condition for a single fiber, and

1,(x;) = [ ((x)) + 7 (x,)] 2. (20)

Note that in (18), two distinct deviations from x, are
present: one accounts for the index profile variation at the
joint, the other is proportional to the joint offset d/a.
However, in (17), the main contributions to the time dis-
persion properties of the optical link consist of 7,(x,) and
7,(x,). Therefore, the well-known compensation effects are
to be expected when 7,(x,) and 7,(x,) have approximately
equal values and opposite signs.

In order to check the validity of the present model, we
show in Fig. 2 a comparison between the baseband re-
sponses of the same optical link, calculated exactly from
(14) (continuous line), and by approximation (4), (18), (19),
and (20) (dashed line). We observe very good agreement, at
least for modulation frequencies lower than twice the 3-dB
bandwidth. For comparison, the baseband responses of the
two single fibers are also plotted in Fig. 2, showing an
excellent compensation. Repeated calculations for different
values of d/a have pointed out slight variations in this
compensation; however the agreement between the results
obtained from the two procedures remains very good.
Since these results have been obtained for a pair of optim-
ally compensating fibers (the 3-dB bandwidth over the
double distance is much.greater than those of the two
single fibers), it seems to be correct to assume that the
approximate method described in this section is always
right. Then, in the following sections, we will present
results obtained from such a method only.
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Fig. 2. Comparison between the baseband responses of the same optical
link, calculated exactly (continuous line), and approximately (dashed
line). In dotted lines the baseband responses of the two single fibers.

IV. ResuLts FOR TwoO FIBERS

There are different ways for studying the effects of
intermodal time dispersion: evaluation of the overall pulse
width A7 [11], of the rms pulse width o [13], and of the
3-dB bandwidth [14]. We restrict ourselves to the first two
methods. For a single fiber, the optimum « to minimize Ar
is a,y =2—2A [11], whereas the optimum « to minimize o
is a,, = 2—12 /5A [13]. The analytical expression of #,(x,),
obtained in the previous section for a pair of cascaded
fibers, leads to the following approximate relationships:

a t+a o t+a
12 ZanA 12 Zana (21)

respectively, for the minimization of Ar and ¢ of the
optical link. The above formulas between the two profile
parameters a;, @, have been obtained under the condition
la; — ay] << (o + @), and ignoring d /a. Nevertheless, for
0<d/a<0.04, which is a typical range of values for
practical joints, the minima in Ar and ¢ shift very little.

In Fig. 3, Ar and ¢ are plotted as functions of «,, with
a; as a parameter. In this calculation we have assumed
A=0.01, z=1km, d/a=0. The dashed horizontal lines
refer to the case of two equal fibers, having oy =a, =a_,
and a; = a, = a,,, respectively. We observe that o for two
different fibers reaches a minimum which is lower than
that of two equal fibers, whereas the minima of A7 lie
approximately on the dashed line. The latter behavior is
due to the small number of degrees of freedom of 7,(x,),
which is practically a parabola, very similar to 7,(x)z,
except for having (o, + ,)/2 instead of the simple . By
contrast, to determine o, the optical power distribution
also plays a significant role, and, for two different fibers,
turns out to favor rays whose group delays are closer to
each other.

The order of installation of the two fibers affects the
values of At and o obtained, but not in a manner so
significant to be distinguishable on graphs like those re-
ported in Fig. 3. This influence is due to the redistribution
of the optical power among the rays, which takes place at
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Fig. 3. Overall pulse width and rms pulse width versus a, with a; as a

parameter, for A=0.01, z;=z,=1km, and d/a=0.

the joint with different properties in the two directions,
owing to the difference between «; and «,. From (18),
when d/a =0, for a; <a,, we have x, smaller than (x;),
i.e., the optical power flows towards the inner rays, whereas
for a; > a,, x, is greater than (x,), i.e., the optical power
flow is directed to the outer rays. For a single fiber, when
a > 2—4A, the outer rays are mainly responsible of a tail in
the impulse response. Therefore, for the range of values
(a; + a;)/2 > 2—4A, which includes also a_, and «a,,, the
condition &, < &, allows reaching minimum dispersion.

In Fig. 4, some curves 7,(x,) are plotted, for different
a,, a,, confirming substantially that the time delay distri-
bution at the output of the optical link is similar to that of
an equivalent pair of equal fibers having a= (a; + a,)/2.
Also, in this case, we have assumed d /a = 0.

The influence of a joint offset can be considered as
comparable to that of the order of installation. From (18),
when a, = a,, the presence of d/a +# 0 leads to x, greater
than (x;), and hence an optical flow towards the outer
rays. Yet, when o, #+ a, different behaviors may occur, and
a precise rule of influence is difficult to infer. However,
only variations of the order of a few percent in At and ¢
can be expected, provided that d/a is smaller than 0.04.
Furthermore, since the present model neglects any mode
filtering, mathematically expressed by the presence of
¢y (d/a) instead of /2 as upper limit of ¢-integration in
(14), it might be inappropriate to generalize such a behav-
ior. A more detailed analysis of the time dispersion effects
of mode filtering due to joint misalignments, but restricted
to a pair of equal cascaded fibers, is reported in [8].
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V. RESULTS FOR N FIBERS

The case of N cascaded fibers, with profile parameters
@, 0,," **, oy, separated by N —1 joints, whose offsets are
di,d,, -, dy_y, can be studied with the help of the fol-
lowing recurrence formula:

2
X _1=X +—x°‘n~l/"‘n_ X
nolT e T, 27 a,+27"
B Wy
Ta, +17" a’

n=N,N—1,---,2 (22)

which has been derived from (18). Symbol { ) has been
omitted for the sake of simplicity. Finally, instead of (4)
and (20), we have

P(e) = [ o) expl it ()] dxy (23)

t(xy) = [n(x)+m(x)+ - +ay(xy)]z. (24)
Also in this case, in order to minimize Ar and o, the
average value of the a,,n=1,2,---, N, must be a, and
a,,, respectively. Nevertheless here a broader spread of
results occurs, depending on the order of installation and
on the joint misalignments.

Assuming 5 fibers, each 1 km long, with perfect joints,
whose profile parameters are randomly distributed in a
given a-interval, but satisfying the formula

5

Z an = Saou

n=1
there are 120 possible orders of installation, and as many
different values of o. The minimum value of o obtained
o, corresponds to the condition oy <@, < a3 <y < as,
whereas the maximum o,,,, corresponds to the condition
o > a, > ay > a, > as. In Table I, o, and o, for three
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TABLEI
MINIMUM AND MAXIMUM rms PULSE WIDTH OVER 5 JOINTED
FIBERS

range of o values O in [ps] O max [ps]

1.95 - 2,00 48 49

1.93 - 2.02 50 52

1,90 - 2.05 54 58

a-intervals are compared. For a narrower a-interval, a
smaller difference between o,,,, and o, occurs, and there-
fore better compensation is achieved.

Assuming 5 fibers, each 1 km long, having a; = a, = a3
=a, = as = 2, and separated by 4 joints whose offsets are
randomly distributed between 0 and 0.04, there are 24
possible combinations of offsets, and as many different
values of . In this case, we have o,;, = 361 ps for d, /a <
d,/a<d,/a<d,/a, and oy, =370 psford,/a>d,/a
>d 3 / ax>d 4 / a.

VL

In the present section, first we take into account the
effects of intramodal time dispersion, and then we consider
a possible extension of our model to profiles not of the
a-type. This gives the opportunity for a discussion of the
choice of the optical source and of practical uses of com-
pensation effects.

Letting 7(A) the time delay per unit distance of the
chromatic component characterized by the wavelength A,
as a first approximation, it can be written as

T(A)=7(A,)+ 7 (A )(A=R,) (25)

where A, is the central wavelength of emission of the
optical source and 7’(A,), called material dispersion, repre-
sents the first derivative of 7(A) at A = A . If one assumes,
for simplicity, a spectral power distribution p(A) which is
uniform between (A, — AA /2) and (A, + AA /2), and zero
out of this interval, it is possible to obtain the following
formulas, for the overall pulse width Ar, and the rms
pulsewidth o, due to intramodal time dispersion

1
23

These quantities must be compared with At and o due to
intermodal time dispersion, to determine which cause of
time dispersion is predominant. The two comparisons may
give rather different results, owing to the shape of the
intermodal impulse response.

In order to give an idea of the practical use of this
analysis, we consider only the former comparison on a pair
of fibers, each 1 km long, jointed without offsets. The first
fiber is characterized by «; = 2. Finally, we assume two
different values of material dispersion: |7/(A,)| =100ps-
(nm-km)~!, which is typical when A =850-900 nm, and
|7(A,)| =10 ps-(nm-km)~!, which is typical when A=
1250-1300 nm. These two intervals of values of A corre-
spond to the two main minima of fiber spectral loss, which

DiscussioN

Ary=|"(A,) ANz 0y =—=|r"(A,)|ANz.  (26)
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Fig. 5. Maximum source linewidth AA for which A7, < 0.247. Curve a
for |¢1/(7\,,)|=10 ps-(nm-km) !, curve & for |7/(A,)| =100 ps-(nm-
km) .

are called, respectively, the first and the second window.
Fig. 5 shows, as a function of the second fiber profile
parameter a,, the maximum AA for which A7, turns out
to be smaller than 0.2 Ar, i.e., for maintaining intermodal
time dispersion as the dominant cause of the total time
dispersion. This condition allows one to exploit almost
completely the compensation behavior on intermodal time
dispersion of the pair of cascaded fibers, discussed in the
previous sections. Otherwise, intramodal time dispersion,
which cannot be compensated, begins to add its effects,
which become more and more noticeable with increasing
AN,

We can divide the optical sources into three main classes:
single-mode laser diodes, whose AA is smaller than 0.1 nm,
multimode laser diodes, characterized by 0.5 < AA <2 nm,
LED’s, having AA >10 nm. Only single-mode laser diodes
allow a complete exploitation of intermodal dispersion
compensation at any wavelength., Multimode laser diodes
can be efficiently employed in the second window only,
whereas LED’s cannot be employed at all. Since the curves
of Ar versus a, with &, as a parameter are very similar to
each other, except for a shift along the a, axis, the above
conclusions about the choice of the optical source can be
considered as independent of «;.

When the index profile is not of the a-type, we have to
describe the optical power in terms of a pair of mode
variables, instead of a single variable [15]. Assuming that
depends both on the propagation constant § and on the
azimuthal mode number », we can write, instead of (2), for
a single fiber, the following equation:

P(w)=fpr(B,v)exp[—im(ﬁ,v)z] dBdv (27)

where G denotes the domain of guided rays, and p(8,») is
the optical power distribution in that domain, which de-
pends on the particular shape of the index profile. Nev-
ertheless, (4) for a pair of cascaded fibers can be replaced

by
P(w) EffGPe(ﬁzyVz)exp["i“’te(ﬁz,”2)] ap, dv,
(28)

in which p,(8,,7,) and ¢,(B,, »,) can be derived from the
knowledge of the two index profiles and of the joint offset.

If the index profiles are not too different and if the joint
offset is small, for z; =z, =z, we can certainly write an
approximate equation of the type

t.(Bosvy) = [ ((B): (1)) + ma(Bosm)] 2 (29)

where
Bo=Brop(an D), oy =mran(ang)
(30)

in which 88; and dp; represent small corrections with
respect to 8, and »;, and An takes formally into account
the difference between the two index profiles. 8,(An, d /a)
and 6»,(An, d/a) can be obtained from geometrical con-
siderations, which are conceptually as simple as those for
a-profile fibers. Only the numerical computation appears
more difficult, because of the double integrals over the
domain G. However, since 08; and d», are small with
respect to 3; and »,, one can expect, as for a-profile fibers,
that the best compensation occurs when 7,(f,,#,) and
7,(B,, »,) have approximately equal values and opposite
signs.

In conclusion, the model presented in the previous sec-
tions should be assumed only as an explanatory example,
in order to have simple rules of compensation. Yet, for real
fibers, which never are rigorously of the a-type, it is more
correct to consider a general equation, like (29). 7(8,»)
can be experimentally determined by a differential mode
delay measurement. This measurement can be performed
either selecting modes at the fiber input [16], or selecting
modes at the fiber output [17]. An output selection allows
usually a better sensitivity, and appears suitable also for
testing a set of cascaded fibers, in order to check in-
termodal compensation.

Before concluding this discussion, we will stress the
fundamental role played by the assumption that mode
coupling has negligible effects, which is at the basis of our
model. Recently [18], it has been shown that a remarkable
degree of mode coupling may be present among modes
having the same B, whereas a very weak coupling char-
acterizes modes with different 8. This has no consequence
for the study of a-profile fibers, in which 7, is a function
of B only. Yet, considering a profile not of the a-type, for
which 7 depends also on », an extended model could be
sometimes preferable, which takes into account mode cou-
pling too, at least within groups of degenerate modes. This
will be done in a subsequent paper.

VIL

Intermodal time dispersion can be compensated in
cascaded multimode fiber links, installing fibers whose
profiles produce time delay distributions of opposite signs.

CONCLUSIONS
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Yet, intramodal time dispersion fixes a lower limit to such

a compensation, which increases with increasing spectral
width of the optical source employed. These conclusions
are not limited to a-profile fibers, although for this class of
fibers a quantitative evaluation of the compensation ap-
pears simpler. This is due to the fundamental role played
by the unique profile parameter «, which allows one to
determine explicit compensation formulas, like (21). Never-
theless, for any class of fibers, it is. possible to attain a
practical intermodal compensation, on the basis of experi-
mental measurements performed on the single fibers, be-
fore jointing. These measurements, which consist of dif-

ferential mode delay investigations, can be repeated after .

the installation, in order to check the compensation behav-
ior.

APPENDIX
The expression of the propagation constant is
= 2}\—ﬂ n(r)cosd
where @ is the propagation angle in the fiber. Substituting
into (6), we have
o [ e 50
a 2A ‘
The maximum permitted value of 6,,4,,,, is given by
sin®,,, = n2(r)—n2(a)

so that (5), assumjng B as independent of 8, can be
rewitten as

26?+

P= 'nf d(i)f sz[l (r/a)a]B(r,¢,sin20a)d(sin20a).

Replacmg variable sin’#, with x, through the above
expression of x, and neglectmg terms of order greater than
one in A, we are left with

pesesrie [Pasf(2Ja(2)., (s 5oo)

and by an inversion of the order of integration
P= 877An2a2f d¢f fx/ (x, AP)( ) ( )
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