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Time Dispersion Properties of Cascaded
Multimode Fiber Links

GIOVANNI CANCELLIERI, MEMBER, IEEE, AND PAOLA FANTINI

Abstract —A generaf model for strsdying the time dispersion properties

of cascaded mrdtimode fiber finks is presented. Fibers having different
index profiles and misaligned joints are taken into acconnt. It is shown tbt

the transit time of a ray in the first fiber is conserved and transferred to

another ray in the second fiber, and so forth. Simple compensation

formulas are derived for a-profile fibers. The lower limit to the total time

dispersion, which is imposed by material dispersion, is also investigated.

, 1. INTRODUCTION

I T IS WELL KNOWN [1]–[5] that cascaded multimode

fibers sometimes exhibit a compensation of their time

dispersion properties. This is due to their index profiles,

which may be either undercompensated or overcom-

pensated. Nevertheless, this compensation should be con-

sidered with some cares, in fact it affects only intermodal

time dispersion (intramodal time dispersion remains un-

changed). Moreover, distributed mode coupling tends to

reduce any compensation effect, although it maybe benefi-

cial for the overall fiber bandwidth [6], [7]. Finally, consid-

ering the very critical role played by joint misalignment on

the time dispersion properties of a pair of equal near-

parabolic fibers recently shown in [8], we can expect that

joint misalignment affects also the compensation behavior

of two or more cascaded fibers.

In this paper we study the time dispersion properties of

an optical link, made of different cascaded multimode

fibers, in the presence of material dispersion and joint

misalignments. Distributed mode coupling is ignored here,

for the sake of simplicity, and will be considered in a

subsequent paper. However, the present approach can be

considered valid for practical fibers, provided that they are

loosely jacketed. The theoretical model is based on ray

optics, which allow a simple characterization of the joint.

Ray optics give acceptable results only when several

hundred modes are propagating. Such a condition is, how-

ever, well satisfied in usual multimode fibers.

In order to obtain general results, we do not consider a

specific dopant for the profile fabrication (e.g., Ge, P, o“ “ ),

which would be characterized by a particular material

dispersion curve. Nevertheless, assuming an optical source

whose power spectrum p(A) is centered at the wavelength

AO and has a linewidth AA, we will consider some behavior

limits on the baseband response due to intramodal time
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dispersion, which depend on AA and on the parameter

d~/dA l~=h , where 7 is the time delay per unit distance of

the chrom;tic component characterized by the wavelength

A. In this way, we can predict when intramodal time

dispersion becomes predominant over intermodal time clis-

persion, making profile compensation useless.

There are different kinds of joint misalignments [9], but

probably the most frequent and critical, for both attenua-

tion and time dispersion properties, is a lateral displace-

ment, sometimes called offset. In [10], it has been shown

that also an angular misalignment (tilt) can be regarded as

an equivalent offset. Letting d be the lateral displacement

between the two fiber axes, and a their core radii, the

offset can be measured by the normalized quantity d/a.

Only very small values of d/a will be considered in the

following, since it is typically some parts per thousand in

fusion splices, whereas it may reach few parts per hundred

in mechanical splices or in remountable connectors.

A very wide class of monotonic graded-index profile

distributions is well approximated by a so-called a-profile

distribution [11]. This is characterized by the property that

the group delay per unit distance of any ray, and even the

optical power carried by that ray under a uniform excita-

tion, depend only on its propagation constant & This

feature much simplifies the theoretical treatment of the

problem. Nevertheless, recently [5], some limits of the

a-profile to reproduce actual fiber index profiles have been

stressed. So, we proceed as follows: firstly we consider

a-profile fibers, which have the advantage of a simpler

formalism, and then we take into account the case of a

general profile, giving some formal relations.

II. GENERAL PRINCIPLES OF THE THEORETICAL

MODEL

For a-profile fibers, letting x be a suitably normalized

propagation constant, whose permitted values range be-

tween O and 1, the group delay per unit distance of ray x

can be written as

Ta(x)=: [l+ A(cr)x+B(a)x2] (1)

where n ~ is the on-axis index, c is the free-space velocity of

light, A(a) and B(a) are constants, depending on the

profile parameter a. All the intermodal time dispersion

properties of a single fiber can be described through the
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complex quantity

~(o) =J1pa(x)exp [–iti~a(x)z] dx (2)
o

where u is the angular modulation frequency, i the imag-

inary unit, P.(X) the optical power distribution in the

domain of variable x, and finally z is the fiber length.

Pa(x) depends on the launching condition and on the

profile parameter a. The baseband response of the fiber,

due to intermodal time dispersion, can be defined as

R((J) = PAP.
We consider now a pair of cascaded fibers, with F1

indicating the transmitting and F2 the receiving fiber. Our

purpose is to determine an equivalent optical power distri-

bution p, and an equivalent phase distribution t=, so that

the baseband response of the optical link consisting of the

two fibers can be obtained through a simple expression like

(2). Assuming as integration variable the normalized prop-

agation constant of F2, i.e., XZ, in the most general case we

can expect to have

We shall show later that it is possible to obtain this

approximate expression

in which te(xz ) represents an equivalent time delay distri-

bution.

The resemblance between (4) and (2) encourages extend-

ing this model to more than two cascaded fibers. Such a

method could be very interesting for predicting the base-

band response of optical links made of many cascaded

fibers, knowing the differential mode delay distributions of

the single fibers, their material dispersion properties, and

approximately the accuracy of the jointing procedure. This

prediction, starting from the single baseband responses,

appears questionable, as recent measurements have shown

[12]. In the following, we will consider fibers having equal

average NA’s, core radii, and on-axis indices, in order to

stress the role played by the different profile parameters a.

III. SIMPLIFIED MODEL OF A JOINT

In this section, we recall briefly some properties of a

single a-profile fiber, then the optical power transfer at the

joint will be described. The radiance distribution B, at the

input or output section of a fiber, is related to the total

guided power P through the quadruple integral

(5)

where r and @ are polar coordinates in the fiber cross
section, 6= is the ray propagation angle in air, 00 is the

angle between the radial direction and the projection of the

ray trajectory on the transverse plane. Finally, a is the core

radius and dd~ the maximum permitted value of da, im-

posed by the fiber NA.

For an a-profile fiber, whose refractive index distri-

bution is

‘(’)=+2A(Y
where all the parameters are known, except for A, which

imposes the fiber NA, we can define a normalized propa-

gation constant x as

x=&(l –@;), ko=:no (6)

in which A is the wavelength of light. With this variable, it

is possible to simplify expression (5), provided that B,

which is imposed by the launching condition, is a suitable

function of r, ~, 0.,6’..

In the Appendix, it is shown that, when B depends only

on x, r/a, and +, which is the case of a joint affected by

lateral displacement, we can write

(7)

Note that, when B depends only on x, by a simple

integration, we have

1P = 2~2An~a2 1B(x)x21adx. (8)
o

Comparing with (2), in which we have to assume @= O,

one can obtain the following relationship between B(x)

and pa(x):

pa(x) = 2n2An~a2x2/”B(x). (9)

In Fig. 1, the cross sections of the two fibers F1 and F2

are shown at the joint. We have two radial coordinates rl,

rz, simply related by Carnot’s theorem

rf =r~ + d2 –2r2dcosq5. (lo)

In the Appendix, it is shown that the variable x defined by

(6) can be expressed as a function of the radial coordinate

r and of the propagation angle in the fiber 8. It is

()
L1 sin’ ex= .!

a c0s20 + 2A “
(11)

At the interface, by a straightforward application of Snell’s

law, we can write

‘1=X2+(3”’-(:)”’(12)

Substituting (10) into this equation, and neglecting terms

of order greater than one in d/a, we obtain

x,=x2+(:)al-~l(:)a’-l:cos+-(:)a2’13)
From (7), the complex quantity necessary for the computa-

tion of the baseband response of the optical link turns out

to be
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fiber F2

fiber F 1

Fig. 1. Cross sections of the two fibers at the joint. 01 and 02 are the

two fiber centers, P is a generic point.

in which the radiance distribution Bl, at the input of Fl,

has been assumed to be a function of xl only. The upper

extreme of +-integration, denoted @M(d/a), is not exactly

7r/2, but it is slightly smaller. However, this fact, which is

important for joint loss evaluation, can be considered as

practically negligible for time dispersion evaluation, so in

the following we will assume +~ = r/2. In (14), xl is

obtained as a function of Xz, r./a, +, from (13).

In order to simplify the analysis, without loss of general-

ity, we consider now Z1 = Z2 = z, and a uniform launching

condition in Fl, so that Bl(xl) becomes a constant BO. In

this way, we obtain

We can assume that, for al close to az, and d/a<< 1, Xz is

much greater than the other terms on the right-hand side of

(13), so that

71(x2 +E)=T1(x2)+q’(x2)t

T((x2)= +[A(aJ+21?(aJx2]

‘=(:)a’-(:)a’-al(%)a’-’:cos+
and hence

~(~) = 8nAn~a2BO~l
o

.exp{ – Z~[Tl(Xz)+ 72(x2)]z} dxz~’2d@

At the modulation frequencies of interest, i.e., not much

higher than the 3-dB bandwidth, we can consider that

o T;(x2 ) cz is a very small angle, therefore

This approximation allows one to express the innermost

integral of (16) in a completely analytical form, leading to

J
~(u) E 2~2An~a2B0 1

0

.exp{–iti[ ~l(xz)+ r2(x2)+ 8~(xz)]z}x~/”’dx2 (17)

with

8T(XJ=~[A(al)+2 B(al)Xz]

“(2
%/~2 —

2 4 q d
—X2 — x2–—— a – I)/a’_.xi 1
C11+2 (X2+2 !7 (X1+l )a“

Since 87(x2 ) is small with respect to TI(x2), it is pmsible

to write

71(X2)+87(X2) = Tl((xl))

(%) ‘X2 + $XP”2 – -&x2

4 al d
———xp–l’’”’;.

Tal+l
(1.8)

In other words, the time delay distribution of fiber F1 can

be added directly to that of fiber F2, provided that xl is

replaced by the new variable (xl) given by (18). Finally,

comparing with (4), one obtains

P,(xz) ~ 2r2An~a2BOx~/”z (1[9)

which coincides with the optical power distribution under a

uniform launching condition for a single fiber, and

~,(x2) = [~l((%))+72(x2)l z. (20)

Note that in (18), two distinct deviations from x2 are

present: one accounts for the index profile variation at the

joint, the other is proportional to the joint offset d\a.

However, in (17), the main contributions to the time clis-

persion properties of the optical link consist of 71(x2) and

T2 ( X2 ). Therefore, the well-known compensation effects are

to be expected when ~l(x2) and ~2(x2) have approximately

equal values and opposite signs.

In order to check the validity of the present model, we

show in Fig. 2 a comparison between the baseband re-

sponses of the same optical link, calculated exactly from

(14) (continuous line), and by approximation (4), (18), (19),

and (20) (dashed line), We observe very good agreement, at

least for modulation frequencies lower than twice the 3-dB

bandwidth. For comparison, the baseband responses of the

two single fibers are also plotted in Fig. 2, showing an

excellent compensation. Repeated calculations for different

values of d/a have pointed out slight variations in this

compensation; however the agreement between the results

obtained from the two procedures remains very good.

Since these results have been obtained for a pair of optim-

ally compensating fibers (the 3-dB bandwidth over the

double distance is much. greater than those of the two

single fibers), it seems to be correct to assume that the

approximate method described in this section is always

right. Then, in the following sections, we will present

results obtained from such a method only.
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‘. . . A =0.01 , at=l.95 , U2= 2.00
.. ..

Z1=Z2= 1 km

a5

‘. a2

I
0.0 I I

o 5 10 15

modulation frequency IGHz 1

Fig. 2. Comparison between the baseband responses of the same optical
link, calculated exactly (continuous line), and approximately (dashed
line). In dotted lines the baseband responses of the two single fibers.

IV. RESULTS FOR Two FIBERS

There are different ways for studying the effects of

intermodal time dispersion: evaluation of the overall pulse

width AT [11], of the rms pulse width u [13], and of the

3-dB bandwidth [14]. We restrict ourselves to the first two

methods. For a single fiber, the optimum a to minimize Ar

is aO~= 2 – 2A [11], whereas the optimum a to minimize u

is aOO= 2 – 12/5A [13]. The analytical expression of t,(xz ),

obtained in the previous section for a pair of cascaded

fibers, leads to the following approximate relationships:

al + (Y.2 al + c+
— = aoo

r=a”~ 2
(21)

respectively, for the minimization of Ar and u of the

optical link. The above formulas between the two profile

parameters al, az have been obtained under the condition

Ial – az] < (al + az), and ignoring d/a. Nevertheless, for

0< d/a< 0.04, which is a typical range of values for

practical joints, the minima in Ar and u shift very little.

In Fig. 3, Ar and u are plotted as functions of a2, with

al as a parameter. In this calculation we have assumed

A = 0.01, z =1 km, d/u= O. The dashed horizontal lines

refer to the case of two equal fibers, having al = az = aOA

and al = az = aOO, respectively. We observe that u for two

different fibers reaches a minimum which is lower than

that of two equal fibers, whereas the minima of Ar lie

approximately on the dashed line. The latter behavior is

due to the small number of degrees of freedom of te(xz),

which is practically a parabola, very similar to ~a(x) z,

except for having (al + az )/2 instead of the simple a, By

contrast, to determine u, the optical power distribution

also plays a significant role, and, for two different fibers,

turns out to favor rays whose group delays are closer to

each other.

The order of installation of the two fibers affects the

values of Ar and u obtained, but not in a manner so

significant to be distinguishable on graphs like those re-

ported in Fig. 3. This influence is due to the redistribution

of the optical power among the rays, which takes place at

;N ,0-s

i ?L-__—__
1.7 1.8 1.9 2JJ 2.I 2.2 2.3 2

3’ ‘o-’~

~ lo-L-_—_—J
1.7 18 1.9 2.0 21 2.2 2.3 24

a2

Fig. 3. Overall pulse width and rms pulse width versus az with al as a

parameter, for A = 0.01, Z1 = Z2 = 1 km, and d/a= O.

the joint with different properties in the two directions,

owing to the difference between al and az. From (18),

when d/a = O, for al < az, we have X2 smaller than (xl),

i.e., the optical power flows towards the inner rays, whereas

for al> az, Xz is greater than (xl), i.e., the optical power

flow is directed to the outer rays. For a single fiber, when

a >2 – 4A, the outer rays are mainly responsible of a tail in

the impulse response. Therefore, for the range of values

(al + az)/2 >2 – 4A, which includes also aO~ and aOO, the

condition al < az allows reaching minimum dispersion,

In Fig. 4, some curves t,(xz) are plotted, for different

al, az, confirming substantially that the time delay distri-

bution at the output of the optical link is similar to that of

an equivalent pair of equal fibers having a = (al + az )/2.

Also, in this case, we have assumed d/a= O.

The influence of a joint offset can be considered as

comparable to that of the order of installation. From (18),

when al = az, the presence of d/a # O leads to Xz greater

than (xl ), and hence an optical flow towards the outer

rays. Yet, when al + az different behaviors may occur, and

a precise rule of influence is difficult to infer. However,

only variations of the order of a few percent in Ar and u

can be expected, provided that d/a is smaller than 0.04.
Furthermore, since the present model neglects any mode

filtering, mathematically expressed by the presence of

O~(d/a) instead of 7r/2 as upper k-nit of ~-integration in
(14), it might be inappropriate to generalize such a behav-
ior. A more detailed analysis of the time dispersion effects

of mode filtering due to joint misalignments, but restricted

to a pair of equal cascaded fibers, is reported in [8].
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Fig. 4. Relative time delay distributions te( X2), for various pairs al –
az. a: 2.02-2.02, bl: 2.02-1.98, bz: 1.94-2.06, c; 1.98-1.98, dl:
2.02–1.90, d2: 1.94-1.98, e: 1.94-1.94.

V. RESULTS FOR NFIBERS

The case of Ncascaded fibers, with profile parameters

al, a2>” “ “, a~, separated by N – 1 joints, whose offsets are

dl, dz, ”””, dN_l, can be studied with the help of the fol-

lowing recurrence formula:

2 2
xn_l=xn+ X:.-A — —Xn

an_1+2 an+2

4 a._l x(an_l_l)/an dn-l—
;an.l+l n a’

~=N,N–1 . . .,2 (22)

which has been derived from (18). Symbol ( ) has been

omitted for the sake of simplicity. Finally, instead of (4)

and (20), we have

~(u) =~lpe(x~)exp [–iate(x~)]dx~ (23)
o

te(xN)= [T1(X1)+’T2(X2)+ “ . “ +TN(XN)]Z. (24)

Also in this case, in order to minimize Ar and u, the

average value of the a., n =1, 2,. ”., N, must be aOA and

a . . . respectively. Nevertheless here a broader spread of
results occurs, depending on the order of installation and

on the joint misalignments.

Assuming 5 fibers, each 1 km long, with perfect joints,

whose profile parameters are randomly distributed in a

given a-interval, but satisfying the formula

~ an= 5ao=
~=1

there are 120 possible orders of installation, and as many

different values of u. The minimum value of u obtained

uti~ corresponds to the condition al < a2 < a3 < a4 < a5,

whereas the maximum u~= corresponds to the condition
al> az > as > cr4 > as. In Table I, Uti. and u~m for three

TABLE I
MINIMUM AND MAXIMUM rms PULSE WIDTH OVER 5 JOINTED

FIBERS

=

range of d values & ~~n [Psi ‘ma. [“J

1.95- 2.00 4B 49

1.93-2.02 50 52

1.90-2.05 54 58

a-intervals are compared. For a narrower a-interval, a

smaller difference between u~= and Uti. occurs, and there-

fore better compensation is achieved.

Assuming 5 fibers, each 1 km long, having al= az ==as

= al = as = 2, and separated by 4 joints whose offsets are

randomly distributed between O and 0.04, there are 24

possible combinations of offsets, and as many different

values of u. In this case, we have Uti = 361 ps for dl /a <

d2/a < d3/a c d4/a, and u~a = 370 ps for dl/a > dz/a
> d3/a > d4/a.

VI. DISCUSSION

In the present section, first we take into account the

effects of intramodal time dispersion, and then we consider

a possible extension of our model to profiles not of the

a-type. This gives the opportunity for a discussion of the

choice of the optical source and of practical uses of com-

pensation effects.

Letting ~(~) the time delay per unit distance of the

chromatic component characterized by the wavelength X,

as a first approximation, it can be written as

T(A) =T(Ao)+ 7’(Ao)(~–~o) (25)

where AO is the central wavelength of emission of the

optical source and ~‘( A .), called material dispersion, repre-

sents the first derivative of ~(~) at A = A.. If one assumes,,

for simplicity, a spectral power distribution p(~) which is

uniform between (A. – AA/2) and (A. + AA/2), and zercl

out of this interval, it is possible to obtain the following

formulas, for the overall pulse width Ar~ and the rms

pulsewidth u~ due to intramodal time dispersion

A~k= ]#(&)@~z u~= ~1~’(&)lA~z. (26)1

These quantities must be compared with AT and u due tc~

intermodal time dispersion, to determine which cause of

time dispersion is predominant. The two comparisons may

give rather different results, owing to the shape of the

intermodal impulse response.

In order to give an idea of the practical use of this

analysis, we consider only the former comparison on a pair

of fibers, each 1 km long, jointed without offsets. The first

fiber is characterized by al= 2. Finally, we assume two

different values of material dispersion: l~’(AO)l = 100ps c

(rim. km)-l, which is typical when A = 850-900 nm, ancl

l~’(AO)l =10 ps.(nm”km)-’, which is typical when A =

1250–1300 nm. These two intervals of values of A corre-

spond to the two main minima of fiber spectral loss, which
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Fig. 5. Maximum source linewidth A)I for which Ar~ <0.2 AT, Curve a

for IT’(AO)I =10 ps. (rim. km)-l, curve b for IT’(AO)I =100 ps. (rim.
km)-l.

are called, respectively, the first and the second window.

Fig. 5 shows, as a function of the second fiber profile

parameter az, the maximum AA for which A~~ turns out

to be smaller than 0.2 Ar, i.e., for maintaining intermodal

time dispersion as the dominant cause of the total time

dispersion, This condition allows one to exploit almost

completely the compensation behavior on intermodal time

dispersion of the pair of cascaded fibers, discussed in the

previous sections, Otherwise, intramodal time dispersion,

which cannot be compensated, begins to add its effects,

which become more and more noticeable with increasing

AA.

We can divide the optical sources into three main classes:

single-mode laser diodes, whose AA is smaller than 0.1 nm,

multimode laser diodes, characterized by 0.5< AA <2 nm,

LED’s, having AA> 10 nm. Only single-mode laser diodes

allow a complete exploitation of intermodal dispersion

compensation at any wavelength. Multimode laser diodes

can be efficiently employed in the second window only,

whereas LED’s cannot be employed at all. Since the curves

of AT versus az with al as a parameter are very similar to

each other, except for a shift along the az axis, the above

conclusions about the choice of the optical source can be

considered as independent of al.

When the index profile is not of the a-type, we have to

describe the optical power in terms of a pair of mode

variables, instead of a single variable [15]. Assuming that r

depends both on the propagation constant P and on the

azimuthal mode number v, we can write, instead of (2), for

a single fiber, the following equation:

where G denotes the domain of guided rays, and p (~, v) is

the optical power distribution in that domain, which de-

pends on the particular shape of the index profile. Nev-

ertheless, (4) for a pair of cascaded fibers can be replaced

(28)

in which P,(PZ, VZ) and t,( l?2, V2) can be derived from the
knowledge of the two index profiles and of the joint offset.

If the index profiles are not too different and if the joint

offset is small, for ZI = Z2 = z, we can certainly write an

approximate equation of the type

~,(B2>v2) = [7-I((B1) >(J’1)) +’72(P2)V2)IZ (29)

where

()
(BJ=BI+WI An,: ,

()
{VI) =Vl + 8VI An, ~

(30)

in which 6& and i3pl represent small corrections with

respect to /31 and VI, and An takes formally into account

the difference between the two index profiles. 8/ij(An, d/a)

and 8v1(An, d/a) can be obtained from geometrical con-

siderations, which are conceptually as simple as those for

a-profile fibers. Only the numerical computation appears

more difficult, because of the double integrals over the

domain G. However, since 8& and 8VI are small with

respect to& and VI, one can expect, as for a-profile fibers,

that the best compensation occurs when 71(/32, V2) and

~2(~2, V2) have approximately equal values and opposite

signs.

In conclusion, the model presented in the previous sec-

tions should be assumed only as an explanatory example,

in order to have simple rules of compensation. Yet, for real

fibers, which never are rigorously of the a-type, it is more

correct to consider a general equation, like (29). 7( ~, v)

can be experimentally determined by a differential mode

delay measurement. This measurement can be performed

either selecting modes at the fiber input [16], or selecting

modes at the fiber output [17]. An output selection allows

usually a better sensitivity, and appears suitable also for

testing a set of cascaded fibers, in order to check in-

termodal compensation.

Before concluding this discussion, we will stress the

fundamental role played by the assumption that mode

coupling has negligible effects, which is at the basis of our

model. Recently [18], it has been shown that a remarkable

degree of mode coupling may be present among modes

having the same /?, whereas a very weak coupling char-

acterizes modes with different ~. This has no consequence

for the study of a-profile fibers, in which T& is a function

of /3 only. Yet, considering a profile not of the a-type, for

which r depends also on v, an extended model could be

sometimes preferable, which takes into account mode cou-

pling too, at least within groups of degenerate modes. This

will be done in a subsequent paper.

VII. CONCLUSIONS

Intermodal time dispersion can be compensated in

cascaded multimode fiber links, installing fibers whose

profiles produce time delay distributions of opposite signs.
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Yet, intramodal time dispersion fixes a lower limit to such

a compensation, which increases with increasing spectral

width of the optical source employed. These conclusions

arenot limited to a-profile fibers, although forthis class of

fibers a quantitative evaluation of the compensation ap-

pears simpler. This is due to the fundamental role played

by the unique profile parameter a, which allows one to

determine explicit compensation formulas, like (21). Never-

theless, for any class of fibers, it is possible to attain a

practical intermodal compensation, on the basis of experi-

mental measurements performed on the single fibers, be-

fore jointing. These measurements, which consist of dif-

ferential mode delay investigations, can be repeated after

the installation, in order to check the compensation behav-

ior.

APPENDIX

The expression of the propagation constant is

p=+(r)cose

where d is the propagation angle in the fiber. Substituting

into (6), we have

()
cl sin20~= 1

a c0s2* + 2A “

The maximum permitted value of O., d.~, is given by

sin2fla~= n2(r)-rr2(a)

so that (5), assuming B as independent of 0+, can be

rewitten as

~=~i2”~@fi~’(’2A[1 -(r’”)”]B(’+s’n2e. )~(sin2e.)

Replacing variable sin28. with x, through the above

expression of x, and neglecting terms of order greater than

one in A, we are left with

and by an inversion of the order of integration

~= ’~A”~a2(’2~$J1~~(’’”B(x: @)(i)~(i)
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